Innovative Models of Graduate Education & Implications on Sponsored Research:
Solutions? Pitfalls? Paths forward....

Kimberly Andrews Espy
Vice President for Research and Innovation
Dean of the Graduate School
research.uoregon.edu

CRPGE Summer Forum, June 2013
I. Summary of findings & recommendations from the NIH (2012) Biomedical Research Workforce Working Group Report

II. Darren Johnson, Associate Professor, Chemistry, University of Oregon

III. Charles Caramello, Associate Provost for Academic Affairs & Dean of the Graduate School, University of Maryland

IV. Panel Discussion (floor open)
 • What’s right and what’s wrong with American Doctoral Education?
 • How can one achieve change in a decentralized faculty driven system to benefit research, students, and the university more broadly?
Age of current R01 holders

[Graph showing the age distribution of current R01 holders with bars and lines indicating NIH R01 PIs and Med School Faculty (AAMC).]
The problem.....lots of students
Trained in mentor model on RPGs
...not taking longer to get Ph.D.
Too many years of postdoctoral training
Particular rise in NTTF jobs
>50% outside of academe
~1 in 4 research in industry or government
~1 in 5 no research at all in science-related job

Grad Ed needs to change

College Graduates
16,000 in 2009

Graduate Education & Training
2009 Total: 83,000
Time to Degree: 5.5-7 yrs
2009 Graduates: 9,000

Postdoctoral Training
2009 Total: 37,000 to 68,000
Median Length: 4 years
5,800 in 2009

Of graduates who stay in the US
30% skip a postdoc
70% do a postdoc

4,000 in 2009
8% of graduates leave the US

International

Post-Training Workforce
(128,000 Biomedical US-trained PhDs)

Science Related Non-Research
18% Biomedical US-trained PhD 2008
~24,000

Government Research
6% Biomedical US-trained PhD 2008
~7,000

Academic Research or Teaching
43% (23% tenured) Biomedical US-trained PhD 2008
~55,000

Industrial Research
18% Biomedical US-trained PhD 2008
~22,500

Non-Science Related
13% Biomedical US-trained PhD 2008
~17,000

Unemployed
2% Biomedical US-trained PhD 2008
~2,500
Goals:

- Attract and retain the best and most diverse scientists, engineers and physicians from around the world to conduct biomedical research.
- Increase the number of domestic students from diverse backgrounds who excel in science and become a part of the STEM workforce.
- Prepare biomedical PhD students and postdoctoral researchers to participate in a broad-based and evolving economy.
Recommendations:

Prepare students for a wide array of career options

- Provide additional training and career development experiences to equip students for various career options via TG supplement
 - project management, communication and business entrepreneurship skills
 - Involve stakeholders in program design
 - SBIR/STTR awardees to provide internships for hands on training at small businesses
 - teaching experience needed for a successful faculty position in liberal arts colleges
 - benefit those students to all

- Institutions should develop other degree programs, e.g. master’s degrees for specific science-oriented career outcomes in industry or public policy.
 - Also can be exit pathways for PhD students who pursue research career track.
 - Change the definition of “success” in faculty, program culture, TG reviewers/NIH institutes.

- Inform prospective students of true career outcomes of their graduates
 - Prospective students can align their study with programs that suit them
Recommendations:

Shorten the length of training (Ph.D + Postdoc) in preparation for biomedical career

- Cap the # of years of NIH supported training (TGs + Fs + RPG) to an institutional M of 5 years (and not > 6 for any individual)
- NIH has no influence over the quality of the training of students supported by RPGs.
 - Increase the relative proportion of graduate students supported by TGs and Fs
- NIH TG motivates graduate programs to provide all students with training that conforms to NIH guidelines and expectations.
 - Revise the peer review criteria for TGs to include outcomes of all students in the relevant PhD programs at those institutions
 - Educate study sections reviewing graduate TGs on the value of the full range of career outcomes
- Harmonize requirements and characteristics of TGs among NIH ICs
Are there examples that might inform our thinking?