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Abstract		

As	a	result	of	NSF-funded	course	redesign	efforts	to	implement,	promote	and	research	
active	learning	in	introductory	calculus,	this	paper	discusses	a	derivative	sketching	activity	for	
Calculus	I.	Pilot	research	indicates	that	overly-qualitative	approaches	to	the	activity	often	lead	
to	certain	incorrect	student	graphs.	After	revealing	a	deeper	look	at	the	mathematics	behind	
the	activity,	the	paper	explores	an	approach	to	moderating	the	lesson	in	a	way	that	leads	
students	to	a	deeper	understanding	by	activating	familiar	pre-requisite	knowledge,	without	
requiring	mathematics	beyond	their	zones	of	proximal	development.		

Introduction		

This	brief	paper	focuses	on	one	course	redesign	approach	for	first-year	calculus	resulting	
from	collaborations	with	the	Mathematics	FLOK	(Faculty	Learning	for	Outcomes	and	
Knowledge)	group	at	Fresno	State.	Key	elements	of	this	redesign	philosophy	are	based	on	two	
principles	inspired	from	mathematics	education	literature	as	well	as	writings	in	cognitive	
psychology	and	research	on	analogical	transfer	in	learning	(Harel,	2007):		

1. The	Necessity	Principle:	“For	students	to	learn	what	we	intend	to	teach	them,	they	must	
have	a	need	for	it,	where	‘need’	refers	to	intellectual	need,	not	social	or	economic	
need.”	(pp.	275-276)	

2. The	Repeated	Reasoning	Principle:	“Students	must	practice	reasoning	in	order	to	
internalize,	organize,	and	retain	ways	of	understanding	and	ways	of	thinking.”	(pp.	275-
276)	

The	above	principles	influence	the	what	and	how	topics	are	covered	in	this	reform	
classroom.	In	terms	of	implementation,	these	two	principles	have	taken	form	in	the	following	
recommendations	for	course	redesign.		

• Review	of	prerequisite	material	should	be	avoided.		

• Important	ideas	and	problem	solving	should	commence	as	soon	as	possible	so	that	their	
practice	can	induce	recognition	of	patterns	to	problem	solving.		
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• Active	learning	is	essential	for	students	to	authentically	internalize,	apprehend	and	
communicate	mathematics.		

To	understand	the	redesign	rationale	from	another	viewpoint,	suppose	that	an	enduring	
an	idea	such	as	the	derivative	concept	is	viewed	as	a	bicycle.	Clearly	there	are	many	
components,	yet	looking	at	them	in	isolation	and	adding	more	and	more	components	to	the	
picture	does	not	provide	a	bicycle	until	the	parts	list	has	been	completed	(see	Fig.	1).		

	
Figure	1.	Learning	to	ride	a	bicycle	would	be	near	impossible	from	just	handling	the	parts	(I	Think	in	
Pictures,	2010).		

A	Wholecept	is	a	cognitive	structure,	arrangement,	or	pattern	of	mathematical	
phenomena	so	integrated	as	to	constitute	a	functional	unit	with	properties	not	derivable	by	
summation	of	its	parts.		

The	Wholecept	definition	was	originally	inspired	from	Tall’s	“precept”	notion	which	
blurs	the	distinction	between	processes	and	concepts;	but	as	reflection	on	teaching	was	
refined,	Fritz	Perls’	gestalt	therapy	writings	informed	the	need	for	a	dynamic	element	similar	to	
the	gestalt	foreground/background	process	of	conflict	resolution	(Grey	&	Tall,	1994;	Perls,	
1973).	According	to	Perls,	if	cognitive	difficulty	is	in	the	foreground,	then	one	cannot	proceed	
until	the	difficulty	is	resolved	and	made	to	retreat	to	the	background	so	that	progression	can	be	
made	to	deeper	conflict	resolution	(see	Fig.	2).	In	this	respect,	real	conflict	in	student	learning	is	
not	due	to	lack	of	understanding	of	prerequisite	material,	but	rather	to	the	need	for	a	coherent	
picture	of	the	“relevance”	of	any	particular	mathematical	topic	they	are	being	required	to	learn;	
hence,	the	above	recommendations.		

	
Figure	2.	Rubin’s	(2001)	famous	illustration	of	figure-ground	perception.		
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To	restate	this	in	terms	of	Harel	(2007),	violation	of	the	Necessity	Principle	constitutes	a	
fundamental	roadblock	to	learning.	The	wholecept	represents	mathematical	knowledge	that	is	
more	“found”	than	constructed	through	a	dynamic	process	of	gradual	conflict	resolution	and	
discovery.	In	this	sense,	the	philosophical	underpinnings	of	this	emergent	theory	of	
mathematical	learning	have	Platonist	underpinnings,	rather	than	being	purely	a	constructivist	
view	of	learning.	Mazur	(2008)	elegantly	captures	this	viewpoint	in	the	following	quote:		

When	I’m	working	I	sometimes	have	the	sense—possibly	the	illusion—of	gazing	on	the	
bare	platonic	beauty	of	structure	or	of	mathematical	objects,	and	at	other	times	I’m	a	happy	
Kantian,	marveling	at	the	generative	power	of	the	intuitions	for	setting	what	an	Aristotelian	
might	call	the	formal	conditions	of	an	object.	And	sometimes	I	seem	to	straddle	these	camps	
(and	this	represents	no	contradiction	to	me).	I	feel	that	the	intensity	of	this	experience,	the	
vertiginous	imaginings,	the	leaps	of	intuition,	the	breathlessness	that	results	from	“seeing”	but	
where	the	sights	are	of	entities	abiding	in	some	realm	of	ideas,	and	the	passion	of	it	all,	is	what	
makes	mathematics	so	supremely	important	for	me.	(p.	20)	

Figure	3	describes	the	conventional	approach	to	apprehending	a	wholecept,	such	as	the	
derivative	wholecept,	by	building	up	from	the	basics,	linearly,	until	the	derivative	can	eventually	
be	defined	and	examples	can	finally	begin	which	employ	and	connect	the	previously	learned	
material	to	the	main	topic.	A	central	weakness	of	this	approach	is	that	students	often	have	very	
little	time	practicing	problems,	reasoning	and	communicating	ideas	related	to	the	“big	picture,”	
which	can	contribute	to	poor	exam	performance	and	retention	of	the	material.	This	is	
represented	by	the	faintness	of	the	final	large	circle	in	Figure	3.		

	
Figure	3.	Unilinear	concept	formation—learning	to	ride	a	bike	by	building	it	one	piece	at	a	time	and	then	
trying	to	ride	only	when	completed.		

In	stark	contrast,	Figure	4	depicts	a	very	faint	initial	picture	of	the	entire	wholecept	
which,	by	repetition,	becomes	more	and	more	clear	to	a	point	of	eventual	mastery.	Note	that	
the	Final	circle	in	Figure	4	is	as	dark	as	the	smallest	low-level	circle	in	Figure	3,	implying	that	the	
derivative	wholecept	has	now	become	a	functional	unit	applicable	to	a	much	larger	picture.	

To	illustrate	how	these	ideas	could	be	applied	to	Calculus	I,	one	could	begin	with	the	
derivative	wholecept	in	its	entirety	on	the	first	day	of	class,	and	then	continually	pull	in	the	
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“necessary”	concepts	which	are	needed	to	make	it	work,	so	to	speak,	so	that	rich	problems	
arising	from	the	derivative	wholecept	can	begin	and	repeated	as	soon	and	as	long	as	possible.		

	
Figure	4.	Wholecept	resolution—taking	a	longer	time	to	repetitively	learn	to	ride	a	functioning	bike.	

Through	this	repetitive	mantra	of	rich-structure	problem	solving,	concepts	such	as	the	
one-sided	and	two-sided	limit,	continuity,	graphs,	slopes,	functions	and	tangent	lines	start	to	
have	renewed	meaning.	Further,	this	allows	for	the	student	to	resolve	issues	of	content	
relevancy,	which	may	now	retreat	to	the	background,	so	that	connections	can	be	recognized	
and	larger-scale	problem	solving	patterns	practiced	and	learned.	Next,	an	activity	in	derivative	
sketching	is	discussed	which	is	one	of	many	weekly	activities	used	in	the	infusion	of	active	
earning	in	calculus	at	Fresno	State,	in	collaboration	with	the	Boulder-Omaha	Active	Learning	
Alliance	(2015).		

Activity	Description		

The	initial	problem:	Coffee	is	being	poured	at	a	constant	rate	v	into	coffee	cups	of	
various	shapes.	Sketch	rough	graphs	of	the	rate	of	change	of	the	depth	ℎ’(𝑡)	and	of	the	depth	
ℎ(𝑡)	as	a	functions	of	time	𝑡	(see	Fig.5).		

	
Figure	5.	The	cylindrical	cup.		

The	two	cup	shapes	discussed	in	this	paper	are	the	cylindrical	and	frustum	shaped	cups.	
In	informal	terms,	most	all	students	over	three	semesters	of	implementation	produce	
qualitatively	correct	graphs	for	the	straight-sided	cup	(see	Fig.	6).		

	
Figure	6.	Cylindrical	cup	student	solutions.		

Slant-sided	cup.	In	contrast,	for	the	inverted	frustum	cup	most	all	students	produce	
incorrect	graphs	for	(𝑡, '('))	(see	Fig.	7).	In	the	following	section,	the	mathematics	behind	these	
related	rate	graphs	is	discussed;	however,	it	should	be	emphasized	that	the	students	
participating	in	this	activity	are	not	expected	to	understand	it	at	the	depth	to	be	discussed.	An	
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important	aim	of	the	mathematical	treatment	given	in	this	paper,	though,	is	to	caution	against	
overly	qualitative	approaches	when	a	deeper	understanding	of	the	mathematics	behind	an	
activity	can	greatly	inform	pedagogy.		

	
Figure	7.	Typical	student	solutions	of	slant-sided	cup.		

A	Deeper	Look		

Looking	more	closely	at	the	cylindrical	cup	with	base	radius	𝑟+,	we	can	safely	conclude	
that	since	the	volume	𝑉(𝑡)	of	coffee	in	the	cup	increases	at	a	constant	rate,	then	so	does	its	
depth.	Hence,	ℎ′(𝑡) ≡ 	ℎ	and	ℎ(𝑡) 	= 	ℎ𝑡	(the	cup	being	empty	initially,	i.e.,	ℎ(0) 	= 	0).		

𝑉(𝑡) = 𝜋𝑟+3ℎ(𝑡)	

Differentiating	both	sides	relative	to	𝑡		

𝑉4 𝑡 = 𝜋𝑟+3ℎ′(𝑡)	

and	considering	that	𝑉′(𝑡) = 𝑣,	we	have:	ℎ’ 𝑡 = 6
789

⟶ ℎ 𝑡 = 6
78;9

𝑡	(given	ℎ 0 = 0).	

As	seen	in	Figure	6,	the	typically	correct	student	graphs	align	well	with	the	mathematics,	
since (𝑡, ℎ’(𝑡))	produces	a	constant	function	horizontal	graph,	and	(𝑡, ℎ(𝑡))	consists	of	a	linear	
graph	through	the	origin	with	positive	slope.	Observe	that	ℎ’(𝑡)	is	not	the	same	as	𝑉’ 𝑡 ,	
although	this	fact	may	elude	students’	attention	when	only	a	qualitative	approach	is	applied.		

For	the	slant-sided	(inverted	frustum)	cup,	let	𝑟(𝑡)	be	the	radius	of	the	surface	of	coffee.	
Then		

𝑟(𝑡) = 𝑟0 +𝑚ℎ(𝑡)		

with	some	𝑚 > 0.	

In	this	case,	it	appears	“natural”	to	think	of	ℎ’(𝑡)	as	a	linear	function	based	on	the	linear	
dependence	of	the	radius	𝑟(𝑡)	on	the	depth	ℎ(𝑡)	which	leads	to	the	conclusion	that	ℎ’(𝑡)	is	a	
linear	function	and	ℎ(𝑡)	is	quadratic.	But	as	we	shall	see,	this	described	qualitative	approach	
fails	the	test	by	mathematics	since	by	the	conical	frustum	volume	formula,	the	volume	of	coffee	
in	the	cup	at	time	𝑡	is	given	by:		

𝑉(𝑡) = ?
@
𝜋 𝑟+3 + 𝑟+𝑟 𝑡 + 𝑟3 𝑡 ℎ(𝑡).	
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Instead	of	differentiating	both	sides	of	the	above	equation	relative	to	𝑡,	which	would	
make	things	more	convoluted,	we	consider	that	𝑉’(𝑡) ≡ 𝑣	immediately	implies	𝑉’ 𝑡 = 𝑣𝑡	(with	
𝑉 0 = 0);	hence,	ℎ(𝑡)	is	to	be	found	from	the	cubic	equation:		

𝑚3ℎ@ 𝑡 + 3𝑚𝑟+ℎ3 𝑡 + 3𝑟+3ℎ 𝑡 − 3𝑣𝑡/𝜋 = 0.	

As	recalled	in	texts	such	as	Boyer	and	Merzbach	(1991),	the	general	formula	for	the	
roots	of	such	an	equation	in	this	case	yields	ℎ(𝑡)	explicitly	as		

ℎ 𝑡 = − ?
@D9 3𝑚𝑟+ + −27𝑚@𝑟+@ − 81𝑚I𝑣𝑡/𝜋J .	

Hence	

ℎ(𝑡) = 𝑎(𝑡 + 𝑏)?/@+c	

with	some	𝑎; 𝑏 > 0	and	𝑐 < 0	such	that	ℎ 0 = 𝑎𝑏?/@ + 𝑐 = 0	and		

ℎ4 𝑡 = P
@
(𝑡 + 𝑏)Q3/@.	Eq.[1]	

Letting	𝑎 = 𝑏 = 1	and	𝑐 = 1	satisfies	the	initial	conditions	and	produces	qualitatively	accurate	
graphs	for	ℎ(𝑡)	and	ℎ′(𝑡)	(see	Fig.	8)		

	 	 	
Figure	8.	Frustum	cup	graphs.		

The	Exponential-Sided	Cup.	As	a	Calculus	II	extension	of	the	previous	analyses,	the	disk	method	
performed	on	an	exponential-sided	cup	highlights	the	mathematical	depth	lying	behind	this	
activity	when	analyzing	vessels	which	are	widening	(or	narrowing)	(see	Fig.	9).		

	
Figure	9.	Flat-bottom	exponential-sided	cup	generated	by	revolving	𝑦 = 𝑒T	around	the	𝑥	axis	𝑥 → 0	to	
ℎ > 0.		
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Using	the	disk-method	from	0	to	ℎ	and	employing	the	previous	technique	letting	
𝑉′(𝑡) ≡ 	𝑣	and	𝑉(𝑡) = 𝑣𝑡,	

𝑉 𝑡 = 𝜋 𝑒TW
+ 𝑑ℎ = 7Y9(

3
− 7

3
= 𝑣𝑡.	

whereby	solving	for	ℎ	gives 	

ℎ(𝑡) = ?
3
𝑙𝑛 36\

7
+ 1 .	

For	a	simpler	picture,	let	𝑣 = 7
3
	which	becomes		

ℎ(𝑡) =
1
2 𝑙𝑛(𝑡 + 1)	

and	then	differentiating	both	sides	relative	to	𝑡	we	have	

ℎ′(𝑡) =
1

2(𝑡 + 1)	

resulting	in	graphs	qualitatively	similar	to	the	slant-sided	cup	graphs	(see	Figs.	8	&	10).		

	 	 	
Figure	10.	Exponential-sided	cup	graphs.		

Facilitating	Transfer:	Known	to	Unknown		

A	first	place	to	start	when	debriefing	groups	of	students	on	this	activity	can	begin	with	
collaborative	discussions	about	their	interpretations	of	their	graphs.	For	example,	looking	back	
at	the	slant-sided	student	solution	graphs	(see	Fig.	7),	after	some	good	questioning	students	
can	arrive	at	the	conclusion	that	the	incorrect	graphs	(𝑡, ℎ′(𝑡))	don’t	make	sense	since	they	
imply	that	the	rate	of	change	of	the	height	eventually	becomes	0.	A	fact	contradicting	the	

constant	filling	of	the	cup,	and	moreover	if	continued,	]W
]\
	becomes	negative	implying	the	height	

function	is	decreasing.		

On	a	positive	note,	students	can	also	reflect	on	the	fact	that	their	(𝑡, ℎ(𝑡))	graphs	
usually	do	make	sense,	since	they	start	at	0	and	increase,	yet	the	rate	of	increase	slows	down	as	
seen	by	the	tangent	lines	to	the	graph	becoming	more	horizontal	and	approaching	zero,	
consistent	with	the	assumption	of	constant	filling	of	an	increasingly	widening	cup	of	coffee.	So	
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the	question	remains,	how	can	students	arrive	at	correct	(𝑡, ℎ’(𝑡))	graphs	given	the	
mathematics	they	know?	Analogical	problem	construction	(APC)	refers	to	“letting	students	
construct	their	own	analogous	problems,…	[which]	allows	the	problem	solver	to	use	his	or	her	
own	knowledge	and	experiences	to	create	the	analogical	problem	elements”	(Bernardo,	2001,	
p.	138).	In	a	mathematics	study	on	APC,	Bernardo	(2001)	found	that,		

One	can	use	a	rather	structured	task,	and	still	allow	students	to	explore	and	engage	the	
information	in	math	problems	enough	to	lead	them	to	deeper	levels	of	understanding	of	the	
problems	which	increase	analogical	transfer	performance.	(pp.	147-148)	

This	paper	concludes	with	some	structured	examples	for	how	APC	can	be	induced	in	the	
context	of	this	activity.		

Conclusion		

Promoting	analogical	problem	construction	in	the	context	of	this	calculus	activity	can	
begin	by	asking	students	to	collaboratively	produce	familiar	functions	that	resemble	their	
(𝑡, ℎ(𝑡))	graphs.	After	discussion	and	concensus,	they	can	be	asked	to	find	the	derivative	
graphs	of	these	familiar	functions	and	compare	them	to	those	made	in	the	cup	activity.	As	an	
example,	the	following	two	functions	are	familiar	to	most	students	and	have	graphs	that	match	
the	initial	conditions	and	have	the	same	qualitative	shapes	as	their	correctly	produced	(𝑡, ℎ(𝑡))	
graphs:		

• ℎ(𝑡) = 𝑡	

• ℎ(𝑡) = 𝑙𝑛(𝑡 + 1)	

At	this	point	in	the	course	material,	calculus	students	can	easily	take	these	derivatives	
and	sketch	their	graphs	(see	Figs.	11	&	12),	and	then	compare	them	to	the	ones	they	produced.	
Important	topics	such	as	concavity	can	be	discussed	as	well	as	subtleties,	such	as	the	difference	
between	Figures	8	and	11,	where	in	Figure	11	the	(𝑡, ℎ’(𝑡))	graph	appears	to	be	infinite	at	𝑡 =
0;	illustrating	the	degenerate	case	when	the	frustum	is	a	cone	(see	Eq.[1],	and	consider	when	
𝑏 = 0).		

	

Figure	11.	(𝑡, ?
3 \
)	graph.		
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As	this	activity	is	done	at	the	end	of	the	semester,	when	anti-differentiation	has	been	covered,	
the	previous	line	of	questioning	involving	graphing	the	derivative	of	familiar	functions	of	
(𝑡, ℎ(𝑡))	can	be	reversed	to	the	case	of	finding	familiar	functions	to	their	(𝑡, ℎ’(𝑡))	graphs,	and	
exploring	problematical	issues	associated	with	graphs	of	their	anti-derivatives.		

	

Figure	12.	(𝑡, ?
\^?
)	graph.		

For	example,	the	following	two	functions	have	the	same	qualitative	shapes	as	their	
typically	incorrect	(𝑡, ℎ’(𝑡))	graphs	(see	Fig.	7):		

• ℎ’ 𝑡 = −2𝑡 + 3		

• ℎ’ 𝑡 = −𝑡3 + 2		

Recalling	the	initial	condition	that	ℎ(0) = 0	then	for	both	antiderivatives	𝐶 = 0;	hence,		

−2𝑡 + 3𝑑𝑡 = −𝑡3 + 3𝑡 + 𝐶 = −𝑡3 + 3𝑡	

−𝑡3 + 2𝑑𝑡 =
𝑡@

3 + 2𝑡 + 𝐶 =
𝑡@

3 + 2𝑡	

The	anti-derivitive	computations	produce	the	above	non-sensical	graphs,	which	may	
promote	rich	discussions	as	they	are	problematical	for	a	variety	of	reasons,	one	being	they	
imply	the	height	increases	then	decreases,	again	contradicting	the	assumption	of	constant	
filling	of	the	coffee	cups,	(see	Figs.	13,	14).	

	

	
Figure	13.	Anti-derivative	graph	for	ℎ’ 𝑡 = −2𝑡 + 3.	
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Figure	14.	Anti-derivative	graph	for	ℎ 𝑡 = −𝑡3 + 2.	

In	summary,	although	active	learning	can	and	should	involve	fun,	interactive	and	
concrete	ways	to	explore	mathematical	concepts,	a	deeper	understanding	and	exploration	of	
the	underlying	mathematics	by	the	instructor	should	not	be	avoided,	as	it	can	hold	the	keys	to	
unlocking	latent	student	knowledge	already	lying	dormant	within.		
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